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An approximate solution of two-dimensional convection in the limit of low Prandtl 
number is presented in which the buoyancy force is balanced by the inertial terms. 
The results indicate that inertial convection becomes possible when the Rayleigh 
number exceeds a critical value of about 7 x 10s. Beyond this value the velocity and 
temperature fields become independent of the Prandtl number except in thin boundary 
layers. The convective heat transport approaches the law N u  = 0.175 Ri for the 
Nusselt number Nu. These results are in reasonably close agreement with the nunieri- 
cal results described in the preceding paper by Clever & Busse (1980). 

1. Introduction 
The analytical model described in this paper has been stimulated by the striking 

demonstration of inertial convection by the numerical computations of Clever & 
Busse (1980; hereinafter referred to as CB). Convection in a layer heated from below 
with rigid boundaries is characterized by the development of two different boundary 
layers as the Rayleigh number is increased. The familiar boundary layer is the thermal 
boundary layer caused by the fact that the heat flux is carried by convection in the 
interior of the layer, but requires conduction to cross the boundaries. The no-slip 
condition at the rigid boundaries is the origin of the development of velocity boundary 
layers as the characteristic Reynolds number becomes large in comparison with unity. 
In most laboratory convection experiments, in particular in those with high-Prandtl- 
number fluids, the Reynolds number stays relatively small and not much attention has 
been devoted to the velocity boundary layer. Since the Prandtl number P describes 
the ratio between the thicknesses of the velocity boundary layer and the thermal 
boundary layer, the former increases in importance as P decreases. Because the non- 
dimensional thickness of the thermal boundary layer is in first approximation a 
function of the Rayleigh number R only, it is clear that the cost of numerical computa- 
tions of convection increases strongly with decreasing P because of the need to resolve 
the thin velocity boundary layer. Boundary layer models are thus especially desirable 
for the understanding of low-Prandtl-number convection. 

It has been mentioned in CB that the assumption of two-dimensional steady con- 
vection is not a realistic one for convection in a low-Prandtl-number fluid, since the 
transition to time-dependent three-dimensional convection precedes the transition to 
inertial convection as the Rayleigh number is increased. But inertial convection 
represents such a highly efficient mode of convection that it must be expected that it 
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occurs in a modified form in the case of three-dimensional time dependent convection. 
The experimental data for the heat transport in low-Prandtl-number fluids strongly 
support this idea. Thus tlie analytical model described in the following section is of 
interest from tlie physical as well as the mathematical point of view. 

It is worth noting at  this point, that the onset of three-dimensional convection is 
delayed when the effects of rotation of the layer about a horizontal axis or the effects 
of a horizontalnniforni magnetic field are considered. It is well known (see, for example, 
Chandrasekhar 1961) t'hat the dynamics of convection rolls parallel to the axis of 
rotation or the magnetic field are not influenced by these additional effects, but three- 
diniensional disturbances are inhibited. The theory presented in t h i a  paper thus has a 
direct application to the case of convection rolls in the presence of a horizontal 
magnetic field or a horizontal axis of rotation. 

2. Mathematical formulation of the problem 
We consider a horizontal layer of fluid satisfying the Boussinesq approximation. 

The temperatures T, and T, are prescribed at  the upper and the lower boundaries of 
the layer. Using the height d of the layer, d 2 / v ,  and T ,  - T ,  as scales for length, time 
and temperature, respectirely, the non-dimensional equations for the velocity vector 
u and the temperature 8 assume the form 

v-u = 0, (2.lb) 

($e+u.ve) P = v2e. 

The Rayleigh number R and the Prandtl number P are defined by 

(2.lc) 

where v is the kinematic viscosity, K is the thermometric conductivity, y is the 
coefficient of thermal expansion and g is the acceleration of gravity which is directed in 
the direction opposite to the unit vector k. All terms that can be written aa gradients 
in equation (2.1 c) have been combined into Vn. We note that for mathematical con- 
venience the time-scaling used in this paper differs by the factor P from that usedin CB. 

Using a Cartesian system of co-ordinates with the z co-ordinate in the direction of 
k the boundary condition at the rigid top and bottom boundaries can be written in 
the form 

U = O ,  O = T a  at z = + + .  (2.3) 

The goal of the analysis is to obtain a simple approximation for the solution of equa- 
tions (2.1) in the case of steady two-dimensional flow. The limit of vanishing Prandtl 
number will be assumed, but the Reyleigh number will not be subjected to restrictions. 
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FIGURE 1. Co-ordinate systems for the description of the convection roll. 

The assumption of two-dimensional flow allows us to introduce the stream function $ 

(2.4) 

where j is the unit vector in the y direction. After taking the y component of the curl 
of equation (2.1 a )  the following equations for $ and 0 are obtained. 

V4$+ RP-lj x k-VB = j -V$ x VV2$, (2 .5n)  

v 2 e = r j . v e x v $ .  (2 .5b )  

In the following, equation (2.5b) will be solved first after assuming a special stream 
function $. Then equation ( 2 . 5 ~ )  will be solved and the arbitrary parameter introduced 
in the analysis will be determined. 

u = V x j$(x, z) ,  

3. An Oseen approximation of the heat equation 
The analysis of this section is based on the assumption that two-dimensional 

convection rolls in a low-Prandtl-number fluid exhibit the ‘flywheel ’-character first 
demonstrated by Jones, Moore & Weiss (1976) and found by CB in the case of an 
infinite layer heated from below. Accordingly, $ depends only on the distance s from 
the centre-line of each roll. Introducing the polar system of co-ordinates 

s = z cos q5 + x sin 4, q5 = arctan x/z,  (3.1) 

we restrict the attention to a single convection roll as shown in figure 1. It is evident 
from this figure that the assumption of ‘flywheel’ convection implies that the ware- 
length of convection exceeds twice the depth of the layer. For simplicity we shall 
restrict the attention to the case when the wavelength is about twice the thickness of 
the layer as in the case of the critical value of the wavenumber. In order to simplify 
the problem further, we shall assume that @ can be approximttted by 

(1.” = T’( 1 - h 2 ) / 8 P  for R < 4, (3.2) 
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i.e. we shall solve the equation (2 .5b )  under the assumption that the motion corre- 
sponds to a rigid rotation. This represents an Oseen approximation which should 
yield reasonable results as long as 1.' corresponds to a suitably defined average of the 
function @(s). 

After introducing definitions (3.1) and (3.2) equation ( 2 . 5 b )  assumes the form 

(3.3) 

The general solution which is regular at the origin is readily obtained in terms of the 
modified Bessel functions of the first kind, 

where the assumption has been made that the y dependence of 0 a t  s = is given by 

(3.5) 

9 denotes the real part in these expressions while 9 will be used for the imaginary 
part. The coefficients 8, depend on the details of the solution of equation (2.5b) in the 
regions with s > 8 and on the boundary condition (2.3). For the analysis of the follow- 
ing sections only the coeficient 0,isimportant. Assuming that the solution 8 = - scos q5 
of the static problem provides a reasonable basis for the determination of O1 we 
obtain 

0, = -$. (3.6) 

The results derived in the following sections do not change much if a small imaginary 
part is added on the right-hand side of (3.6). 

4. Solution of the equation of motion 
When expression (3.4) is introduced into equation ( 2 . 5 ~ )  and the assumption is 

made that the component of $ proportional t o  exp(i24) is negligible in comparison 
to the mean component $(s), the equation 

is obtained where the bar indicates the average over the @ dependence. Integration 
of (4.1) yields 
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and by further integration we find 

where the condition of regularity at the origin has been imposed. In the appendix it is 
shown that the appropriate boundary condition in the limit P + 0 is given by 

(4 .4)  
d 
-+(s) = 0 at  s = a. 
d S  

Application of this condition yields 

The convection velocity uc is thus given by 

The right-hand side can be easily evaluated in the limits of low and high Peclet number 
V by using the relationships (s&, for example, Abramowitz & Stegun 1965)) 

i'vs (iVs2)2 
for V < 1 ,  I l ( s J ( i V ) )  = &sJ(i'v) 1 +-+ +...I ; (4 .7a )  [ 4 . 2 !  1 6 - 3 ! . 2 !  

for 'v 9 1, I l ( s , / ( i V ) )  = exp{s,/(iV)}(1-3/8sJ(iV)+ . . . ) / ( 4 n , s , i ~ ) ) .  (4 .7b)  

An approximate solution for the combined equations (2 .5)  is obtained when the 
expression for uc following from (3 .2)  is related to expression (4 .6) .  

In  the spirit of the Oseen approximation we equate the mean angular velocity of 
the velocity field (4 .6)  with the constant VP-l of expression (3 .2) .  In the low-Peclet- 
number limit ( 4 . 7 ~ )  we obtain 

VP-' 3 R V P l ( 3 0 7 2  + V2)-l 8 Jo' ( 1 - 6s2 + 8s4) 8 d8, (4.8) 

where terms of the order V 3  and of higher order have been neglected. Relationship 
(4 .8)  yields 

(4.9) 

which indicates that inertial convection can be expected only when the Rayleigh 
number exceeds a second critical value of the order 7 x lo3, 

V' x j5zR - 3072, 

R, w 12.3072 f 5  x 7373. (4.10) 

For large values of the Peclet number V for which the Oseen approximation is especi- 
ally appropriate we obtain in place of (4 .8)  

VP-1 x &R(PV)-l, (4.11) 

which indicates that the Peclet number V grows asymptotically proportionally to the 
square root of the Rayleigh number. 
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5. Discussion 
The numerical computations of the Numelt number in low-Prandtl-number fluids 

shown in figure 2 of CB strongly suggest the existence of a second critical Rayleigh 
number R, at which the slope of the heat transport changes discontinuously in the 
limit of vanishing Prandtl number. But it is difficult to extrapolate the available 
numerical results to that limit. The data are certainly not in disagreement with a 
value of R, of the order 7 x lo3. 

A mathematical test of the Oseen approximation can be deduced from the analysis 
of Proctor (1977) who solved equations (2.5) in the low-Peclet-number limit. Although 
Proctor’s work dealt with the onset of inertial convection in a horizontal cylindrical 
tube heated from below, the boundary conditions used in his analysis turn out to be 
identical to those applied in the present model. Because of the different scaling used 
in Proctor’s paper, his value of the second critical Rayleigh number must be multi- 
plied by 16 for the comparison with the present analysis. After slightly correcting the  
numerical values given in Proctor’s paper we obtain 

R, = 6900, 

which is in reasonable agreement with the Oseen value (4.10). 
Of special interest is the asymptotic expression for the heat transport. According 

to the basic equations ( 2 . 1 )  the ratio between the heat transport by convection alone 
and the heat flux in the absence of convection is given by 

N u -  1 = P(0k.V x j$), (5.1) 

where the angular brackets indicate the average over the fluid layer and N u  denotes 
the Nusselt number. Using the asymptotic expression for large Peclet numbers 
V (4.7b) in evaluating ( 3 . 6 ~ )  and (4.6), the right-hand side of (5.1) yields 

This asymptotic expression for the Nusselt number lies slightly above the numerical 
values computed for low Prandtl numbers in figure 2 of CB, but agrees well with the 
asymptotic slope indicated by the curves. The remarkable property of the relation- 
ship (5.2) is its independence of the Prandtl number which contrasts sharply with the 
small-amplitude perturbation result of Schluter, Lortz & Busse (1965) and also with 
the viscosity independent law N u  cc (RP))  often used in astrophysical applications. 

Relationship (5.2) also compares well with the experimental measurements of 
Rossby (1969) in mercury (P = 0.025) which yield 

N u  0.147 R0.257&0.004. 

Even though the convection flow is three dimensional and time dependent under the 
conditions of the experiment, the remarkably high observed heat transport indicates 
that the realized convection flow possesses the same basic properties as the inertial 
convection mode discussed in this paper. 

An asymptotic relationship similar to (5.2) can be derived for the kinetic energy of 
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convection in the double limit of large R and small P .  Using the large-Peclet-number 
limit of (4.6) we obtain 

(5.3) 

which agrees well with the high-Rayleigh-number values shown in figure 11 of CB. 
Note, that the non-dimensional velocity of CB differs by a factor P from that used in 
this paper. Again, the remarkable fact is that the convective velocity scales with the 
velocity of thermal diffusion even in the limit when the latter tends to infinity a t  a 
given value of the viscosity. 

&(u.u) = ~ T ( R / ~ ~ P V ) ~  w Rn/128P2, 

The research reported in this paper has been supported in part by the Atmospheric 
Science Section of the U.S. National Science Foundation. Part of the research was 
done while the authors were visiting the Institut of Reaktorbauelemente of the 
Kernforschungszentrum, Karlsruhe, Wcst Germany. 

Appendix 
Since the boundary conditions acting on the convection roll velocity field depend 

strongly on the # co-ordinate introduced in (3.1), it seems at first sight unlikely that a 
circular motion depending only on the s co-ordinate could give a valid approximation. 
But the viscous boundary layer influenced by the non-axisymmetric component of 
tangential stress has a characteristic thickness given by 

6 = d( VPIR)) ,  

which tends to zero in the limit of vanishing Prandtl number. In other words, because 
of its high Reynolds number the convection flow is affected essentially only by the 
average tangential stress acting on its boundary. 

In order to investigate the problem of the proper boundary condition in more detail, 
we follow the analysis of Burggraf (1966).  We consider a circular eddy, the velocity of 
which is approximately described by the stream function $= $(s). While it can be 
assumed that $satisfies the condition 

$ = O  at a = + ,  (A 1) 

a perturbation stream function $ must be added in order to satisfy the #-dependent 
viscous boundary conditions imposed at s = 4 

By taking the y component of the curl of the equations of motion for $ we obtain 

(A 2) 

where terms quadratic in $ have been neglected. Introdncing the Oseen ayprosinia- 
tion we replace s-V$/as by its average value - IV, 
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The general solution of this equation which is regular at  the origin is given by 
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m 

n = l  
$ = u.,, - b, s2 + 2 [a, sn + b, I, (sJ(in W ) ) ]  exp {in$}. (A 4) 

Tlie condition $ = o at  s = 4 requires 

b, = 4a,, b, = -a,I,(&/(inW)). 

We now consider the special case of the boundary conditions 

-(--$)=~--(~$+z$)=O a l a  a 1  a a for $ = i n ,  #n at s = Q ,  ( A s )  
as s as 

with some smooth interpolation between the two conditions for intermediate angles $. 
In  first approximation all terms in expression (A 4) can be neglected except for those 
corresponding to n = 2. In the limit of high Reynold number, 

W-tCQ, (A 7) 

the asymptotic representation for the modified Bessel functions I, (x) may be used. 
Accordingly, we set 

$ w nz[s2- exp{(s-~)J(iW)}/4(2s)~]exp{2i$} (A 8 )  

and obtain from (A 6) 

where terms of the order W-2 have been neglected. From expression (A 9) follows that 
in the limit (A 7), the $ term in (A 5) is negligible, and boundary condition (A 6) 
reduces to 

- @ = O  at s = i .  

The boundary conditions for the problem described in figure 1 are more complicated 
than those considered here and in general all coefficients corresponding to an even 
subscript n in expression (A 4) must be taken into account. But it is unlikely that 
this will change the boundary condition (A 10) in the limit (A 7) which is the 
appropriate one for the problem considered in 4. 

(A 10) 
a 
as 
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